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A comparison of quantum and semi-classical theories of the 
interaction between a two-level atom and the radiation field 
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Department of Physics, Wellesley College, Wellesley, Mass. 02181, USA 

Received 13 April 1973, in final form 6 May 1974 

Abstract. The interaction of a two-level atom with a single mode of the radiation field is 
considered both in a fully quantized and a semi-classical theory. With only the dipole and 
rotating-wave approximations the Liouville equations are solved to give the exact behaviour 
of the diagonal elements of the density operator and of their semi-classical analogue. The 
results suggest experimentally verifiable differences between the two theories. 

1. Introduction 

We shall discuss here a two-level atom interacting with the electromagnetic field in a 
lossless cavity, particularly with a view to comparing the quantum and semi-classical 
results. Numerous authors, for example Crisp and Jaynes (1969), Scully and Sargent 
(1972), Swain (1972a, b ;  1973a, b), have discussed the semi-classical theory in general 
and this problem in particular. Jaynes and Cummings (1963), in one of the early papers 
on the theory, have discussed the model we shall consider from a somewhat different 
point of view, and arrive at results that are consistent with ours. 

Consider a single atom at rest in a lossless cavity one of whose modes has a frequency 
near one of the transition frequencies of the atom; we suppose that all other modes of 
the cavity have somehow been suppressed, so that it suffices to consider the interaction 
of that one mode with the pair of atomic states of interest. For completeness, and in 
order to clarify the notation, we shall briefly outline a derivation of the equations of 
motion; Fleck (1966), Louise11 (1964, p 212 ff), and others give somewhat more detailed 
accounts. 

If only one cavity mode, u(r) is excited, we may write the electric field as? 

E(r, t )  = ($ho)''2u(r)(a e-Luf + at eb*) 

where o is the frequency of the cavity mode, and a is the usual normalized amplitude ; 
in the interaction picture it is a constant. In the semi-classical theory a is a c number, 
while in the quantum theory it is, of course, an annihilation operator. 

If the cavity is sufficiently well tuned to an atomic transition, only two of the atomic 
levels, 11) and 12), contribute. We will take 

E ,  = 0, E ,  = ho,, 

t We use Heaviside-Lorentz (ie, rationalized Gaussian) units, and have defined the normalized amplitudes 
to be 90" out of phase with the customary ones. 
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and shall denote the atomic transition operator by 

be-'"O' = 11)(21; 

in the interaction picture b is also a constant. 

origin the interaction energy is 
The atom interacts with the field via a dipole moment. If the atom is at rest at the 

H' = - p  . E(0, t) = hg(b e-ku0t + bt eioot)(a e-iu'-" + ut eioor), 

H, = hg(a'b e-'"'+abt e'"'), 

(1 )  

where g = -e(~/2h)"~u(O). (2lrll). Keeping only resonant terms?, we have 

(2) 

where the frequency mismatch between cavity and atom is 

v = wg-w. 

In the interaction picture the density operator evolves according to 

Let us write 

where the quantities 

Pij(t) = ( i l ~ ( t ) l j )  (4) 

are density operators for the radiation field. The Liouville equation (3) can then be 
written as four coupled equations for the pi,{t). If we suppose that the atom is initially 
in a stationary state or mixture then pl2(O) = 0, and we can describe the behaviour of 
the diagonal terms by two coupled equations : 

+ exp[ -iv(t-t')](atp22(t')a-atapll(t'))}, 

d 
- ~ ~ ~ ( t )  = -g2  dt 

dt' {exp[iv(t - t')] (aa tp22(t') - up 1( t')at) 

+ exp[ - iv( t - t')] ( p 2  2( t')aat - ap (t')at)} I 

Except for the approximations that went into equation (2), and the restriction that 

PlZ(0) = 0 

these equations are exact. 
t The non-resonant terms may be. included as a perturbation, as in Jaynes and Cummings (1963), or in a 
formally exact treatment, as in Swain (1973a). However, it does not seem worthwhile to do  so without including 
also the effects of other atomic levels-whose frequency mismatch is less than that of the anti-resonant terms. 
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2. The quantum-mechanical problem 

Let us denote the joint probability of finding the atom in state j (= 1,2)  and the field 
in a state with n photons by phn, t )  : 

t )  = (nlPjAt)ln>. 

From equations ( 5 )  and (6)  we see that 

d 
dt 
-pl(n,  t )  = 2ng2 dt’ cos v( t  - t‘)(p2(n- 

d d 
- p z ( n -  1 ,  t )  = --pl(n, t ) .  dt  dt 

These equations can readily be solved using Laplace 
written compactly in terms of a generating function as 

G,(Y, t )  = P l h  t)e-nY 
m 

n = O  

(7) 

1, t’)-Pl(n, t”, (8) 

(9) 

transforms. The results can be 

e-”Y = c  (p1(n, 0)[2g2n+v2+2g2n cos t(v2+4g2n)”2] 
n = 0 4g2 n + v2 

+ p z ( n  - 1,0)2gZn[l -cos t (v2  +4g2n)1’2]},  
m 

m e - ( n - l ) Y  
- 
- n = l  C 4 g ~ n + v 2  {pz(n  - 1 ,  O)[2g2n - v2 + 2g2n cos t(v2 + 4gZn)1’2] 

+p1(n, 0)2g2n[l -cos t(.2+4g2n)”2]}. (1 1 )  
The probabilities pl(n, t )  and pz (n ,  t )  can be read off directly from these expressions. 
For the atom, the probabilities for finding it in its ground and excited states are given 
by Gl(O, t )  and G,(O, t ) ,  respectively. For the field, the statistical properties at time t 
can be determined from Gl(y, t) + G,(y, t). 

3. The semi-classical problem 

For the semi-classical problem the field amplitudes a and at  become c numbers; in 
order to emphasize the distinction between the two models we shall denote them by 
a and a*. The quantities p i i t )  of equation (4)  are, of course, also no longer operators, 
but distribution functions for a ;  we shall denote them by q j a ,  t ) .  Corresponding, in a 
sense, to the photon-number distributions p,{n, t )  of equation (7), we have here intensity 
distributions 

(Of course, since a is still normalized as the quantum-mechanical amplitude, the intensity 
of the field is not (a[’ but +fi~lu(r)1~1a1~.) 
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Since all quantities are c numbers, equations ( 5 )  and (6)  immediately give 

d 
dt - f i1 (~ ,  t )  = 2xg2 dt’cos v(t-t‘)(fi,(x, t‘)-#zl(X, t‘)) 

The solutions may be obtained in exactly the same way as before. 

in terms of generating functions 

F,(s, t )  = 

In order to preserve the analogy to equations (10) and (1 1) we express the solutions 

dx fil(x, t )  e-sx Iom 
{fi1(X, 0)[2g2x+ v 2 +  2g2x cos t(v2 +4g2x)”2] 

+PZ(X,  0)2g2x[1 -cos t(v2+4g2x)1’2]), 

e-sx 
{fi2(x, O)[2g2x + v 2  +2g2x cos t(v2+4g2~)1’2] 4g2x + v2 

= JOw dx 

+fil(x, 0)2g2x[1 -cos t(v2+4g2x)1/2]}. (15) 

The functions Fj do not strictly correspond to the G j  of the quantum-mechanical 
problem. Glauber’s P representation (Glauber 1963) permits one to define an intensity 
distribution corresponding to hj(a, t )  for the quantum-mechanical problem. It then 
becomes clear that the quantum analogue of F is not 

Gj(y, t )  = tr[pj,(t) exp(-yata)l, 

but 

It can be shown (Louise11 1964, p 119), that 

G(y, t )  = F’( 1 - e- y ,  t ) ,  

so that the two functions approach each other in the classical limit, ie for large (x} or 
( n ) ,  or for small s or y. We would thus expect both the quantum and semi-classical 
systems to behave in similar ways in the classical limit. That, however, need not be true, 
as we shall see for the second example below. 

It is clear from a comparison of equations (8) and (12) that for large values of n the 
solution for the quantum-mechanical p,(n, t )  approaches the semi-classical #Ax, t )  to 
O(l/n). This result agrees precisely with the result of Swain (1973b), who has solved the 
problem of equation ( l ) ,  ie without the rotating-wave approximation. The difference 
in behaviour between the two theories arises from the differing physical interpretations 
of the functions # and p ,  and not from their mathematical differences. 
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4. Initially chaotic field 

A chaotic state ofthe radiation field may be obtained, for example, by a thermal excitation 
of the cavity mode. For such a field having a mean energy hon, and for the atom initially 
in its ground state, 

p1(n,  0)  = (n+ 1 ) -  ' ( 1  + l/n)-" 

P , b ,  0) = 0. 

The corresponding intensity distributions are (Glauber 1963) 

With this initial state, the probability for finding the atom in the ground state at 
time t is, from equation (lo), 

for the quantum theory ; or, from equation (14), 

a e-"'fi 

F,(O, t )  = (E)- Io dx 4g2x + vz  [2g2x + v2 + 2g2x cos t(4g2x + v2)1/2]  (17) 

for the semi-classical theory. Clearly the two theories do  not differ very wildly: the 
series of equation (16) converges fairly slowly for even moderate values of i, so that the 
sum may be well approximated by an integral, and the terms in the sum approach the 
form of the integrand of equation (56) for large ii. 

The behaviour of G,(O, t )  is shown in figure 1 for some selected values of the para- 
meters. I do  not show F,(O, t), since its behaviour is not enlighteningly different. 

5. Initially coherent field 

This is essentially a classical field with a well defined intensity ; we shall suppose that the 
field is initially in a stationary state, so that only the intensity and not the phase are 
well defined. Lasers and masers produce fairly good approximations to such fields. 
If we take the atom to be initially in the ground state again, then 

#1(x) = 4 X - X o )  

f i Z ( 4  = 0, 

where xo is the normalized intensity of the field. The corresponding photon number 
distributions are (Glauber 1963) 
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Figure 1. Behaviour, in quantum theory, of G,(O, t) ,  the probability of finding an atom in 
the ground state at time t ,  plotted as a function of the dimensionless parameter gt.  The 
radiation field is initially in a chaotic (eg, thermally excited) state of various strengths; 
values of the mean numbers of initial photons, ii, are 0.1 (curves A), 1.0 (curves B) and 10 
(curves C). The three graphs are for : (a) cavity and atom perfectly matched, v = 0; (b) cavity 
and atom slightly mismatched, v = 2g; (c) cavity and atom quite mismatched, v = 6g. 
See equation (16). 

If the atom is initially in the ground state, the probability of finding it there at t is, 
again from equation (lo), 

x",n! 
G,(O, t )  = e-*O [2g2n + v2 + 2g2n cos t(4g2n + v ~ ) ' ' ~ ] ,  

= 0 4g2n + 1'2 
for the quantum theory ; or, from equation (14), 

F,(O, t )  = (4g2x0 + v 2 ) -  1[2g2x0 + v2 + 2g2x0 COS t (4g2xo + v ~ ) ~ ' ~ ] ,  (19) 

for the semi-classical theory. 
The differences between the two theories are considerably greater than in the previous 

case, and these differences do not disappear in the classical limit. That is, while it is 
true that the Poisson distribution becomes very sharply peaked about n = x o ,  that 
peak is only relatiue[y narrow, having a width of about x y ' .  Thus even for large x o  
the semi-classical theory predicts regular oscillations of the probability of finding the 
atom in its ground state, while the quantum theory predicts fluctuations in that prob- 
ability that are superpositions of many terms with incommensurable periods. 

The behaviour of G,(O, t )  for some sample cases is shown in figures 2 and 3. One 
striking feature of the behaviour for v = 0 for large x o  is the nearly total cancellation of 
the oscillations for an extended period of time: the atom is effectively raised to an 
infinite temperature. The semi-classical theory simply predicts regular sinusoidal 
oscillations in F,(O, t ) ,  which I have not shown on the graphs. The frequency of these 
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Figure 2. Behaviour, in quantum theory, of G,(O, I ) ,  the probability of finding an atom in 
the ground state at time t ,  plotted as a function of gt. The radiation field is initially in a 
coherent state, whose intensity (in natural units-ie, the mean photon number), xo,  is given 
with each curve; values of xo are 0.1 (curves A), 1.0 (curves B) and 10 (curves C). The three 
graphs are again for : (a) atom and cavity perfectly matched, v = 0;  (b) atom and cavity 
slightly mismatched, v = 2g; (c) atom and cavity quite mismatched, v = 6g. See equation 
(18). The corresponding semi-classical behaviour is a pure sinusoidal oscillation with 
period T given by gT = a/Jxo, so that gT is 9.93 for xo = 0.1, 3.14 for xo = 1.0, and 0.99 
for xo = 10. Note that the quantum theory predicts an almost total absence of oscillations 
for extended periods for large xo, independent of v .  

oscillations is ZgJx,, which is more or less the same as that of the initial oscillations of 
G,(O, t )  shown in the graphs. 

The differences between these predictions should not be impossible to see. For a 
cavity of lo2 cm3 in volume, an atomic dipole moment of e x lo-' cm, and for microwave 
frequencies on the order of 10'os-' the coupling constant g is of the order of lo4 s - ' .  
The time scale of the figures is thus of the order of tenths of milliseconds. For fairly low 
intensities, corresponding to a field temperature of lo4 K, xo - lo5, and the frequency 
of the semi-classical oscillations is of the order of lo7 s - '  ; for more typical maser 
generated intensities (mW cm- '), xo - lo'', and the corresponding semi-classical 
frequency is io9 s-  '. 

6. Conclusions 

One of the most fruitful methods of investigating the interaction of isolated atoms with 
the radiation field employs atomic beam techniques?. Although such experiments are 
by no means the only ones that can be done, they are sufficiently general that they may 
t An experimentally oriented discussion of a closely related situation is given in Silverman and Pipkin (1972). 
However, Silverman and Pipkin are chiefly interested in the radiation damping, which they treat according 
to quantum mechanics, and treat the driving field semi-classically. 
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Figure3. The long-term behaviour of G,(O, t )  for an initially coherent field with dimensionless 
intensity xo = 10, with cavity and atom perfectly matched, v = 0. The three graphs are for: 
(a)O Q gt Q 12.5;(b)(continuationof(a)) 12.5 Q gt Q 25;(c)87.5 Q gt Q 100. Seeequation 
(18). The period of the semi-classical oscillations is gT = 0.99, which is approximately the 
period of the oscillations in the quantum behaviour. The behaviour for gt > 25 has the 
general character of that illustrated in the last graph. 

serve as a paradigm for our discussion. In such an experiment one has a cavity filled 
with a radiation field prepared to be in a specified state; at  t = 0 an atom-also in a 
specified state-enters the cavity ; after a certain amount of time, t ,  which can be adjusted 
by varying the length of the cavity or the speed of the atom, the state of the atom is 
investigated by a detector. One thus measures just the probability of finding an atom 
in, say, the ground state at  time t ,  given that it was initially in the ground state, and given 
the initial state of the field. For the quantum theory that probability is just G,(O, t ) ;  
for the semi-classical theory it is F,(O, t) .  

The initial state of the radiation field can, in principle, be determined from a priori 
considerations or from photon-counting and interference experiments. Thus, although 
the functions p j (n )  and bhx) are not directly measurable, they are experimentally verifi- 
able. If one, for example, prepares a field to exhibit the correlation and coherence 
properties of fields with a well defined amplitude, one may use the appropriate expres- 
sions for a coherent field from either the quantum or semi-classical theories. If one 
were to perform an atomic beam experiment of the sort described one should in principle 
be able to see whether the results obeyed equation (18) or (19). 
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